Methyl 4-Diethylamino-2-formamidothieno[2,3-*d*]pyrimidine-6-carboxylate

PANAYOTIS TSIVERIOTIS AND NICK HADJILIADIS*

Laboratory of Inorganic and General Chemistry, Department of Chemistry, University of Ioannina, Ioannina 45-110, Greece

FRANÇOISE DAHAN AND JEAN-PIERRE LAUSSAC

Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077 Toulouse CEDEX, France

(Received 19 October 1993; accepted 4 November 1994)

Abstract

The crystal structure of the thienopyrimidine derivative methyl 4-diethylamino-2-formamidothieno[2,3-*d*]pyrimidine-6-carboxylate, $C_{13}H_{16}N_4O_3S$, displays a strong stacking interaction between the two crystallographically independent, almost planar molecules of the asymmetric unit.

Comment

Thieno[2,3-*d*]pyrimidine was first prepared in 1953 (Baker, Joseph, Shaub, McEroy & Williams, 1953). Diaminothieno[2,3-*d*]pyrimidines are known to possess antimalarial, antibacterial and antihelmentic activities (Rosowsky, Chaykowsky, Chen, Lin & Modest, 1973; Chaykowsky, Lin, Rosowsky & Modest, 1973; Rosowsky, Chen & Lin, 1973).

Copper(II) complexes of these interesting ligands (Jakovidis, Varvounis & Hadjiliadis, 1988), as well as cobalt(II) and nickel(II) complexes, have also been reported (Tsiveriotis, Varvounis, Papadimitriou & Hadjiliadis, 1994). During an attempt to prepare Co^{II} and Ni^{II} complexes of the corresponding ligand methyl 2-amino-4-diethylaminothieno[2,3-*d*]pyrimidine-6-carboxylate in the presence of tetraethylorthoformate (TEOF), crystals of methyl 4-diethyl-2-formamidoaminothieno[2,3-*d*]pyrimidine-6-carboxylate, (I), were precipitated. The structure of this compound was solved by X-ray diffraction methods.

The two independent molecules, A and B, are almost planar and arranged in a head-to-tail fashion. The two thieno [2,3-d] pyrimidine planes are almost parallel, the dihedral angle being $178.1 (5)^{\circ}$.

Fig. 1. ORTEP representation of the two crystallographically independent molecules showing the labelling scheme for A. Displacement ellipsoids are plotted at the 40% probability level.

The molecular packing is enhanced by a stacking interaction, of an average distance of 3.51 Å between A and B, and by a hydrogen-bonding scheme between the amido N2 α and O2 γ atoms of the formamido groups of adjacent molecules.

The shortest van der Waals contact is between $O6\beta A$ and $C13B(1 - x, \frac{1}{2} + y, 2 - z)$ and is 3.311(4) Å, while the distance between $O6\beta B$ and $C13A(1 - x, -\frac{1}{2} + y, 1 - z)$ is 3.402(4) Å.

Fig. 2. *ORTEP* packing diagram in the unit cell showing the hydrogenbonding scheme. Bond lengths and angles are $N2\alpha \cdots O2\gamma_i = 2.935$ (4), $HN2\alpha \cdots O2\gamma_i = 2.00$ Å, $N2\alpha - HN2\alpha \cdots O2\gamma_i = 160^\circ$, from A to B (x, -1 + y, z), and $N2\alpha \cdots O2\gamma_{ii} = 2.907$ (4), $HN2\alpha \cdots O\gamma_{ii} = 1.96$ Å, $N2\alpha - HN2\alpha \cdots O2\gamma_{ii} = 166^\circ$, from B to A (x, 1 + y, z).

Acta Crystallographica Section C ISSN 0108-2701 ©1995

The bond distances and angles are within the expected ranges. They are slightly different in the two independent molecules. The C6—S7—C8 angle [90.7 (2)°] and the corresponding C-S bonds [1.732(3) and 1.730(3)Å], are in agreement with single-bond values. They are comparable with the corresponding values for thiazole in thiamine derivatives (Louloudi, Hadjiliadis, Feng, Sukumar & Bau, 1990; Cramer, Kirkup & Carrie, 1988), where the S atom is known not to interact with metal ions, due to the participation of the sulfur lone electron pair in the ring resonance.

Experimental

```
Crystal data
C_{13}H_{16}N_4O_3S
```

$C_{13}H_{16}N_4O_3S$	Mo $K\alpha$ radiation
$M_r = 308.36$	$\lambda = 0.71073 \text{ Å}$
Monoclinic	Cell parameters from 25
P21	reflections
a = 7.214(1) Å	$\theta = 11.5 - 17.6^{\circ}$
b = 10.513(1) Å	$\mu = 0.224 \text{ mm}^{-1}$
c = 19.459(2) Å	T = 293 K
$\beta = 90.81 (1)^{\circ}$	Rectangular
$V = 1475.7 (5) \text{ Å}^3$	$0.50 \times 0.20 \times 0.15$ mm
Z = 4	Colourless
$D_x = 1.388 \text{ Mg m}^{-3}$	

Data collection

Enraf–Nonius CAD-4	2983 observed reflections
diffractometer	$[I > 2\sigma(I)]$
ω –2 θ scans	$\theta_{\rm max} = 24^{\circ}$
Absorption correction:	$h = 0 \rightarrow 8$
ψ scan (North, Phillips	$k = -9 \rightarrow 12$
& Mathews, 1968)	$l = -22 \rightarrow 22$
$T_{\min} = 0.979, T_{\max} =$	3 standard reflections
0.999	frequency: 120 min
3224 measured reflections	intensity decay: 0.3%
3224 independent reflections	- •

Refinement

<u>NCHICHCH</u>				
--		$C2A - N2\alpha A$	1.395 (4)	$C2B - N2\alpha B$
Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.006$	$N2\alpha A - C2\beta A$	1.334 (4)	$N2\alpha B$ — $C2\beta B$
R = 0.021	$\Delta q_{\text{max}} = 0.15 \text{ e} \text{ Å}^{-3}$	$C2\beta A - O2\gamma A$	1.225 (4)	$C2\beta B$ — $O2\gamma B$
wR = 0.025	$\Delta \alpha = 0.23 \alpha \Lambda^{-3}$	C4A—N4A	1.339 (4)	C4 <i>B</i> —N4 <i>B</i>
WI = 0.025	$\Delta \rho_{\rm min} = -0.25 \ {\rm e} \ {\rm A}$	N4A-C10A	1.477 (4)	N4B—C10B
S = 0.85	Extinction correction: none	C10A—C11A	1.511 (5)	C10B—C11B
2983 reflections	Atomic scattering factors	N4A—C12A	1.469 (4)	N4B—C12B
378 parameters	from International Tables	C12A—C13A	1.521 (5)	C12B—C13B
H-atom parameters not	for X-ray Crystallography		C6A—S7A—C8A	90.7 (2)
refined	(1974 Vol IV)		S7A—C8A—C9A	112.4 (3)
	(1)/4, 0.110)		C8A—C9A—C5A	110.9 (3)
Unit weights applied			C94-C54-C64	113 3 (3)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$)

	x	у	Ζ	U_{eq}
\$7A	0.7491 (1)	0.5000	0.85413 (4)	4.18 (5)
S7 <i>B</i>	0.2198 (1)	0.4325(1)	0.64001 (4)	4.11 (5)
06 <i>βA</i>	0.8138 (4)	0.7638 (3)	0.9091(1)	6.8 (2)
$O6\beta B$	0.1598 (4)	0.1663 (3)	0.5878(1)	6.0(2)
$06\gamma A$	0.8540 (3)	0.8546(2)	0.8066(1)	5.0(1)
$O6\gamma B$	0.0629 (3)	0.0877 (3)	0.6886(1)	5.2(1)
$O2\gamma A$	0.4806 (3)	-0.0522 (2)	0.6564 (1)	5.6 (2)

$O_{2} \sim B$	0.4093 (3)	1.0031 (3)	0.8353(1)	62(2)
NIA	0.6701 (3)	0.2931(3)	0.0555(1)	38(2)
N1B	0.2890 (3)	0.6422(3)	0.7143(1)	38(2)
N3A	0.6625 (3)	0.3042(3)	0.6570(1)	33(1)
N3B	0.2756 (3)	0.6345(3)	0.8376(1)	38(2)
N2qA	0.5761 (3)	0.1227(3)	0.7147(1)	40(2)
$N2\alpha B$	0.3469 (3)	0.8203(3)	0.7786(1)	44(2)
N4A	0.7319 (3)	0.4787(3)	0.5930(1)	3.8 (2)
N4B	0.2376 (3)	0.4541(3)	0.9006(1)	40(2)
C8A	0.7189(4)	0.4162(3)	0.7782(1)	34(2)
C8B	0.2515 (3)	0.5175 (4)	0.7154(1)	34(2)
C9A	0.7430 (3)	0.4922 (3)	0.7205(1)	31(2)
C9B	0.2277(3)	0.4417(3)	0.7200(1)	32(2)
C5A	0.7805 (4)	0.6217 (3)	0.7399(2)	35(2)
C5B	0.1777 (4)	0.3150 (3)	0.7553(2)	3.7 (2)
C6A	0.7880 (4)	0.6392 (3)	0.8085 (2)	3.5 (2)
C6B	0.1690 (4)	0.2958 (3)	0.6865 (2)	3.7 (2)
C6aA	0.8188 (4)	0.7562 (4)	0.8479 (2)	4.2 (2)
C6 αB	0.1300 (4)	0.1783 (4)	0.6487 (2)	4.4 (2)
C6δA	0.8865 (5)	0.9754 (4)	0.8412 (2)	5.7 (2)
C6δB	0.0200 (5)	-0.0314(4)	0.6553 (2)	6.2 (2)
C2A	0.6410 (4)	0.2477 (3)	0.7165 (2)	3.5 (2)
C2B	0.3001 (4)	0.6912 (3)	0.7763 (2)	3.7 (2)
C4A	0.7144 (4)	0.4273 (4)	0.6555(1)	3.3 (2)
C4B	0.2474 (4)	0.5074 (4)	0.8381(1)	3.3 (2)
C2βA	0.5466 (4)	0.0551 (4)	0.6576 (2)	4.6 (2)
C2βB	0.3623 (5)	0.8930 (4)	0.8351 (2)	5.3 (2)
C10A	0.6714 (4)	0.4072 (3)	0.5313(1)	4.4 (2)
C10B	0.2198 (4)	0.5349 (4)	0.9619 (2)	5.0(2)
CIIA	0.8177 (5)	0.3177 (4)	0.5048 (2)	6.3 (2)
C11 <i>B</i>	0.4060 (5)	0.5745 (4)	0.9933 (2)	7.6 (3)
C12A	0.8118 (4)	0.6047 (3)	0.5797 (2)	4.1 (2)
C12B	0.2594 (5)	0.3168 (4)	0.9132 (2)	5.1 (2)
C13A	0.6630 (5)	0.7063 (4)	0.5718 (2)	6.4 (2)
C13B	0.0787 (5)	0.2484 (4)	0.9251 (2)	6.5 (3)
	. ,	,		(0)

Table 2. Selected geometric parameters (Å, °)

\$7A—C8A	1.732 (3)	S7B—C8B	1.730(3)
C8A—C9A	1.391 (4)	C8BC9B	1.404 (4)
C9A—C5A	1.437 (5)	C9B—C5B	1.427 (5)
C5A—C6A	1.348 (4)	C5B—C6B	1.354 (4)
C6A—S7A	1.737 (3)	C6B—S7B	1.739 (4)
C6A—C6aA	1.464 (5)	C6B—C6 <i>αB</i>	1.463 (5)
$C6\alpha A - O6\beta A$	1.195 (4)	$C6\alpha B - O6\beta B$	1.214 (4)
$C6\alpha A - O6\gamma A$	1.336 (4)	$C6\alpha B - O6\gamma B$	1.325 (4)
$O6\gamma A - C6\delta A$	1.455 (4)	$O6\gamma B$ — $C6\delta B$	1.442 (4)
C8A—N1A	1.342 (4)	C8B—N1B	1.339 (5)
N1A—C2A	1.338 (4)	N1 <i>B</i> —C2 <i>B</i>	1.314 (4)
C2A—N3A	1.313 (4)	C2B—N3B	1.346 (4)
N3A—C4A	1.348 (4)	N3B—C4B	1.352 (5)
C4A—C9A	1.449 (4)	C4BC9B	1.431 (4)
$C2A - N2\alpha A$	1.395 (4)	C2B—N2 α B	1.399 (4)
$N2\alpha A - C2\beta A$	1.334 (4)	$N2\alpha B - C2\beta B$	1.342 (5)
$C2\beta A - O2\gamma A$	1.225 (4)	$C2\beta B$ — $O2\gamma B$	1.206 (5)
C4A—N4A	1.339 (4)	C4B—N4B	1.341 (4)
N4A-C10A	1.477 (4)	N4B—C10B	1.472 (4)
C10A—C11A	1.511 (5)	C10B—C11B	1.525 (5)
N4A—C12A	1.469 (4)	N4B—C12B	1.472 (5)
C12A—C13A	1.521 (5)	C12B—C13B	1.510 (5)
	C64-574-C84	90.7(2)	
	S7A-C8A-C9A	1124(3)	
	C84 - C94 - C54	1109(3)	
	C9A - C5A - C6A	113 3 (3)	
	C54 - C64 - S74	112.7(2)	
	C9A = C8A = N1A	1277(2)	
	C84 - N14 - C24	110.9 (3)	
	N1A - C2A - N3A	1294(3)	
	C2A - N3A - C4A	1193(3)	
	N3A-C4A-C9A	118.0(3)	
	C4A - C9A - C8A	114.6 (3)	
	S7A-C8A-N1A	119.8 (2)	
	C5A - C9A - C4A	1344(3)	
	C5A - C6A - C6cA	1296(3)	
	S7A-C6A-C60A	1177(2)	
	$C6A - C6\alpha A - O6\beta A$	124.8(3)	
	$C6A - C6\alpha A - O6\gamma A$	111 3 (3)	
	$06\beta A - C6\alpha A - 06\gamma A$	123.8 (3)	

P. TSIVERIOTIS et al.

C6αA—O6γA—C6δA	115.4 (2)
$N1A - C2A - N2\alpha A$	114.0 (3)
$N3A - C2A - N2\alpha A$	116.6 (3)
$C2A - N2\alpha A - C2\beta A$	124.9 (3)
$N2\alpha A - C2\beta A - O2\gamma A$	124.4 (3)
N3A—C4A—N4A	115.9 (3)
C9A—C4A—N4A	126.1 (3)
C4A—N4A—C10A	120.2 (3)
C4A	124.5 (3)
C10A—N4A—C12A	115.3 (2)
N4A—C10A—C11A	113.3 (2)
N4A—C12A—C13A	111.9 (3)
C6B—S7B—C8B	90.7 (2)
S7B—C8B—C9B	112.3 (3)
C8B—C9B—C5B	110.8 (3)
C9B—C5B—C6B	113.6 (3)
C5B—C6B—S7B	112.6 (3)
C9B—C8B—N1B	126.5 (3)
C8B—N1B—C2B	112.2 (3)
N1B—C2B—N3B	129.3 (3)
C2BN3BC4B	117.8 (3)
N3B—C4B—C9B	118.9 (3)
C4B—C9B—C8B	115.0 (3)
S7B—C8B—N1B	121.1 (2)
C5B—C9B—C4B	134.0 (3)
C5B—C6B—C6aB	128.9 (3)
\$7 <i>B</i> —C6 <i>B</i> —C6α <i>B</i>	118.4 (2)
$C6B - C6\alpha B - O6\beta B$	122.9 (3)
$C6B - C6\alpha B - O6\gamma B$	112.4 (3)
$O6\beta B$ — $C6\alpha B$ — $O6\gamma B$	124.7 (3)
$C6\alpha B$ — $O6\gamma B$ — $C6\delta B$	116.0 (3)
$N1B$ — $C2B$ — $N2\alpha B$	114.9 (3)
$N3B - C2B - N2\alpha B$	115.9 (3)
$C2B - N2\alpha B - C2\beta B$	126.6 (3)
$N2\alpha B$ — $C2\beta B$ — $O2\gamma B$	124.7 (4)
N3B—C4B—N4B	115.5 (3)
C9B—C4B—N4B	125.7 (3)
C4B—N4B—C10B	120.0 (3)
C4B—N4B—C12B	123.6 (3)
C10B—N4B—C12B	116.2 (2)
N4B	113.3 (3)
N4B—C12B—C13B	113.8 (3)

Data collection was performed using *CAD-4 Software* (Enraf-Nonius, 1989). *PROCESS* in *MolEN* (Fair, 1990) was used for data reduction. The structure was determined by direct methods using *SHELXS86* (Sheldrick, 1985) and refined by full-matrix least-squares techniques (*SHELX76*; Sheldrick, 1976). All H atoms were located from a difference Fourier map and kept fixed (C—H = N—H = 0.97 Å). *R* values for both enantiomers were similar. The absolute structure was chosen by comparing the values of F_c/F_o for Bijvoet pairs and by considering the Flack (1983) parameters [0.10 (8) and 0.69 (9)]. All calculations were made on a MicroVAX 3400 computer. Molecular graphics were produced using *ORTEP* (Johnson, 1965).

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and least-squares-planes data have been deposited with the IUCr (Reference: HR1004). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Baker, B. R., Joseph, J. P., Shaub, R. E., McEroy, F. J. & Williams, J. H. (1953). J. Org. Chem. 18, 138-152.
- Chaykowsky, M., Lin, M., Rosowsky, A. & Modest, E. J. (1973). J. Med. Chem. 16, 188-191.
- Cramer, R. E., Kirkup, R. E. & Carrie, M. J. (1988). Inorg. Chem. 27, 123-130.

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius,
Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for
Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Flack H D (1983). Acta Cryst. A 39 , 876–881.

- Jakovidis, I., Varvounis, G. & Hadjiliadis, N. (1988). Inorg. Chim. Acta, 151, 165-167.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Louloudi, M., Hadjiliadis, N., Feng, J. A., Sukumar, S. & Bau, R. (1990). J. Am. Chem. Soc. 112, 7233-7238.
- North, A. C. T., Phillips, D. C. & Mathews, F. J. (1968). Acta Cryst. A21, 351–359.
- Rosowsky, A., Chaykowsky, M., Chen, K. K. N., Lin, M. & Modest, E. J. (1973). J. Med. Chem. 16, 185-188.
- Rosowsky, A., Chen, K. K. N. & Lin, M. (1973). J. Med. Chem. 16, 191-194.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Tsiveriotis, P., Varvounis, G., Papadimitriou, Ch. & Hadjiliadis, N. (1994). *Transition Met. Che.* **19**, 335–339.

Acta Cryst. (1995). C51, 1609-1614

The Cyclic Depsipeptide Backbone of the Didemnins

Scott C. Mayer, Patrick J. Carroll and Madeleine M. Joullié*

Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA

(Received 7 March 1994; accepted 22 November 1994)

Abstract

An X-ray crystal analysis of φ -lactone N-{1-{N-{4-{[3hydroxy-5-methyl-1-oxo-4-(N-L-threonylamino)heptyl]oxy}-2,5-dimethyl-1,3-dioxohexyl}-L-leucyl}-L-prolyl}-N,O-dimethyl-L-tyrosine hydrobromide hydrate (1a), C₄₂H₆₆N₅O₁₁⁺.Br⁻.H₂O, was obtained in order to determine the backbone folding of the macrocycle and to compare the results obtained with those reported previously for the natural product didemnin B (1b). Some differences were noted in the torsion angles of the two conformers of the hydrobromide salt, denoted (1a) and (1a'). The conformation of (1a') resembled the conformation of (1b) more closely than did that of (1a). Certain regions of both crystal backbones were more flexible than those in didemnin B; however, the transannular hydrogen bonds in both (1a) and (1a') were somewhat stronger than in (1b).